Visualization of Environmental Burden Reduction Efforts in Japan

August 2024

Ministry of Agriculture, Forestry and Fisheries of JAPAN

Facing many Challenges

- Depopulation and aging of producers
- Stagnant rural communities
- Climate change and increasing natural disasters
- Disrupted supply chains due to the COVID-19
- Other challenges to achieve SDGs

GHG Emissions from Agriculture, Forestry and Fisheries in Japan (FY2022)

Agriculture, Forestry and Fisheries (AFF) accounts for about only 4% of the domestic total GHG emissions. 80 % of the domestic methane emissions is from the AFF sector. Total methane emissions (2022) have been reduced by about 33% from the 1990 level. Per capita emissions are relatively small.

MIDORI's Approach

Inputs

Reduction of environmental burden

- Sustainable sourcing of materials/energy
- Effective use of local and /or unused materials
- Encouraging R&D for reuse/recycle of resources

Sustainable food systems

Innovation for Production sustainability & productivity

- Shifting to more sustainable & productive methods
- Greening of materials/machineries
 - Developing and disseminating plant
 - varieties with less environmental burden
 - Sequestrating carbon into farmlands, forests and oceans
 - Improving work environment
 - Responsible fisheries resource management

Processing and distribution

Consumption

Communication with consumers

- Reducing food loss and waste
- Bridging consumers and producers
- Promoting Japanese diet as a balanced model
- "Woodening" the life
- Promotion of sustainably-harvested and cultured seafood

Promotion of sustainable processing/distribution practices

- Switching to sustainable import materials
- Increasing efficiency based on data science and AI
- R&D for packaging materials for long-term use
- Strengthening competitiveness of decarbonized, environmentally friendly food industry

Consumer awareness of environmentally friendly agricultural products

- More than 60% of the respondents answered that the reason why they have never purchased agricultural products grown using environmentally friendly production methods or will not purchase them in the future is because they are not sure which products are environmentally friendly.
- It is important to prepare the environment in which consumers can make choices through the "visualization" of farmers' efforts to reduce environmental burden.

Number of valid responses:2,875 4

Visualization of environmental burden reduction efforts

\triangleright	Based on the MIDORI Act, "visualization" of farme	ers' actions to reduce environmental		
burden is promoted for consumers' choices .				

- Quantitatively calculated "avoided GHG emission rate" is graded as the number of stars and indicated in the labels of products.
- For rice, biodiversity conservation efforts can be evaluated according to the total score of farming practices as an additional indicator.

GHG emission reduction	Biodiversity conservation	
GHG emissions from Avoided	Farming practice (ex.)	Score (pts)
100% - $\frac{\text{GHG emissions from}}{\text{GHG emissions from}} = \text{emission}$	Chemical pesticides & fertilizers reduction	1~2
average farming practices rate(%)	Winter flooding in paddy fields	1
<pre>%For rice, vegetables, fruits, tea (23 crops)</pre>	Field margin vegetation management (herbicide-free)	1
 ★★: Avoided emission rate ≥20% ★ *: Avoided emission rate ≥10% ★: Avoided emission rate ≥5% 	※For m ※For m 二温室効果ガス削減 生物多様性保全 ★ * * : 3 points * * * : 2 points * : 1 point	rice only or more
		5

1. Evaluate the **production stage**

- 2. Use primary data from farmers
- 3. Consider **regionality**

GHG Emissions Calculation Tool: Scope

- 80-90% of GHG emission throughout a full life cycle of food comes from a production stage.
- > The crop production stage of domestic agricultural products is the scope of visualization in Japan.

GHG Emissions Calculation Tool: Input data and Crops

- > Farmers provide primary data on their farming practices.
- > The differences of each region are considered.
- The tool can calculate GHG emissions and reductions for 23 crop items, including rice, vegetables, fruits and tea.

Basic information						
Crops	Rice					
Prefectures	Niiga	ita				
Cultivated area	10.0	а				
Annual production	500	kg				
How to treat crop residue	How to treat crop residue					
Crop residue	Residue plow					
How to irrigate paddy fields (applicab	le only for rice)					
Water management	Intermittent irrigation					
Extension of mid-season drainage	Yes					
Practices to store carbon into soil						
Biochar application	Biochar application Yes					
Biochar Types	Bamboo charcoal					
Biochar Amount (5year total)	1,000.0	kg/10a				
Use of cover crops	Use of cover crops					
Cover crops Types		—				
Autumn plowing						
Implementation		-				

	Sample dat					
Input data						
Pesticides usage	Data	Standard Value				
Pesticides	Input data/	- kg/10a				
Germicides		- kg/10a				
Other agrochemicals	values	- kg/10a				
Herbicides		- kg/10a				
Fertilizer usage	Data	Standard Value				
Nitrogenous fertilizer(N)		- kg/10a				
Phosphorus Fertilizers(P)	Input data/	- kg/10a				
Potash fertilizer(K)	values	- kg/10a				
Manure		- kg/10a				
Plastic material	Data	Standard Value				
Agricultural PVC Films	Input data/ Use	- kg/10a				
Other plastic material	values	- kg/10a				
Fuel & Electrics usage	Data	Standard Value				
Gasoline		- L/10a				
Diesel oil		- L/10a				
Kerosene	Input data/	- L/10a				
Heavy oil A	Use standard	- L/10a				
LPG	values	- L/10a				
City gas		- m3/10a				
Crid Floatricity		- k Wh/10a				

Measuring: GHG Emissions Calculation Tool

- MAFF developed a Calculation Tool to <u>quantify GHG emissions from crop</u> production at the crop production stage based on farmers' primary data.
- The tool enables <u>a comparison of GHG emissions from individual farmer's</u> practices with the emissions from conventional/average farming practices in the region.

Pesticides
 Fertilizer
 Plastic material
 Fuels/electrics
 N2O
 Methane from paddy field
 Residue Treatment
 Carbon sink

GHG emissions based on input data per 10a (0.1ha)				Reference (Regional Average)		
GHG emissions /10a	820.95 kg-CO ₂ e/10a	Rat	io	1509.47 kg-CO ₂ e/10a	Ratio	
Pesticides	30.6 kg-CO ₂ e/10a	2	2.7%	30.6 kg-CO ₂ e/10a	2.0%	
Fertilizer	63.1 kg-CO ₂ e/10a	Ę	5.6%	63.1 kg-CO ₂ e/10a	4.2%	
Plastic material	1.0 kg-CO ₂ e/10a	(0.1%	1.0 kg-CO ₂ e/10a	0.1%	
Fuels/electrics	111.5 kg-CO ₂ e/10a	(9.9%	111.5 kg-CO ₂ e/10a	7.3%	
N2O	21.1 kg-CO ₂ e/10a	1	L.9%	21.1 kg-CO ₂ e/10a	1.4%	
Methane	903.4 kg-CO ₂ e/10a	79	9.9%	1290.5 kg-CO ₂ e/10a	85.0%	
Residue Treatment	0.0 kg-CO ₂ e/10a	().0%	0.0 kg-CO ₂ e/10a	0.0%	
Carbon sink	-309.8 kg-CO ₂ e/10a	-27	7.4%	-8.4 kg-CO ₂ e/10a	-0.6%	

Result: Concept of "Avoided Emission Rate" and Labelling

- GHG Emissions Calculation Tool shows "avoided emission rate" based on the amount of GHG emission compared to that of average cultivation in the region.
- A grade for labelling is determined by comparing the rate with thresholds of each grade; <u>stars are rewarded according to the avoided emission rate</u>.

Avoided
emission= 100% -GHG emissions from the cultivation
by a farmer in question
GHG emissions from average cultivation
in the region

★ ★ : Avoided emission rate ≥20%
★ ★ : Avoided emission rate ≥10%
★ : Avoided emission rate ≥5%

Concept of Biodiversity Conservation Labelling (for rice only)

- For rice, in paddy field, there are several practices for biodiversity \geq conservation. These efforts would be evaluated basically by how many of these practices are implemented in the paddy fields.
- Labelling as an additional indicator of GHG reduction.

(1) Chemical pesticides & fertilizers Reduction

> Score 1~2

Source : PwC

(3) Earthen-Dithch /Biotope

Source : Niigata Prefecture

(5) Postpone/Stop mid-season drainage (until tadpoles become frogs etc.)

Source : MAFF

(2) Winter flooding in paddy fields

Source : Miyagi Prefecture

(4) Fish Conservation (fishway to paddy fields etc.)

(6) Field margin vegetation management (herbicide-free)

生物多様性保全

Source : Shiga Prefecture

Source : Kyoto Prefecture

Labelling on Products

- Communicate farmers' environmental burden reduction efforts to consumers with a label on the products
- Will expand the labelling to various stakeholders of food systems such as retails, food services, e-commerce and schools.

Next Steps

Improvement of GHG Emissions Calculation Tool

- Increase the number of items for which the tool can be used such as beef, dairy products and flowers
- > Develop a web application that allows farmers to easily perform GHG emissions calculation
- Integrate newly developed practices/techniques for GHG emissions reduction into the calculation tool.

Enhancement of the labelling usage at retail and food service level

- Increase the distribution number of products with the labeling through domestic supermarket chains and local sales networks etc.
- Promote partnerships between food companies and restaurants.

Raising consumer awareness

- Encourage consumers to choose environmentally friendly agricultural products.
- Promote publicity and advertising through mass media.

Thank you !

